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ABSTRACT
AI systems are increasingly used to assist decision making in high-
and low-stakes domains, yet little is known about how the timing
and severity of their errors affect user trust. In this mixed-methods
study (n = 364), we examine how users respond to AI misclassifica-
tions in two real-world contexts: military security and social media
moderation. Participants evaluated a classifier that made high- or
low-severity errors at different points in a sequence (beginning,
end, random, or never). We find that trust is not simply a function
of accuracy, but shaped by the timing and severity of errors. Even
subtle output sequencing can influence perception, especially in
‘low-risk’ contexts.

We discuss how certain interaction design patterns, such as
sequencing outputs to end on a high note, could inadvertently
or deliberately shape user trust. We propose a set of preliminary
design patterns and oversight strategies to help identify when user
perceptions might be unintentionally distorted. By pinpointing
how severity and timing shape willingness to rely on AI, this work
provides practical guidance for building systems that better align
with human expectations, foster user trust, promote transparency,
and support regulatory oversight.
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• Human-centered computing→ Human computer interac-
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1 INTRODUCTION
AI classification systems are increasingly embedded in decision-
making processes across domains ranging from healthcare to con-
tent moderation, and when integrated into human workflows, such
systems can significantly enhance efficiency [53]. Although these
systems often perform well on average, even small misclassifica-
tions can erode trust, particularly in high-stakes contexts [55]. A
growing body of work in ‘explainable AI’ has emphasized the im-
portance of accuracy, fairness, and explainability in shaping user
trust in AI systems [13]. While it is known that errors undermine
trust [31, 55], two underexplored factors—when an error occurs and
how severe it is, may also be influential.

Trust dynamics has been widely studied in interpersonal con-
texts (between humans), however those findings may not be di-
rectly transferrable to AI systems. In human-human interactions,
trust is often fragile early in a relationship due to a limited history,
and violations (particularly severe ones) can lead to a rapid loss
of trust [36, 37]. Consistency and reliability over time generally
strengthen interpersonal trust, whereas costly failures tend to end
relationships [37].

In contrast, studies in human-automation interaction suggest
that trust in machines may be more resilient, even after serious
failures. Parasurman et al. found that participants still relied on
an automated engine monitoring system even after a simulated
catastrophic failure [51]. Similarly, current studies focusing on AI
collaborators indicate that the success of human-AI teamwork is
largely dependent on the trust humans place in AI systems [50].
While it is known that AI errors undermine trust [31], less is un-
derstood about which kinds of errors are most damaging, or why.

Emerging research suggests that timing may play a key role,
e.g., a‘recency bias’ can lead people to weigh recent events more
heavily than earlier ones [27, 38]. Similarly, severity influences trust:
minor misclassifications may be tolerated, whereas high-stakes
failures can irreparably damage user confidence [47, 59]. Some
studies propose a threshold effect, where trust degrades similarly
after any noticeable error, regardless of its severity [63], whereas
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others show that the impact of errors is shaped by their detectability
and contextual interpretation [28]. Yet, little is known about how
timing and severity jointly influence trust in AI systems.

This paper presents a mixed-methods study (n = 364) examining
how the timing and severity of false-positive errors influence trust
in an AI image classifier across two contexts: military defense
and social-media moderation. Participants experienced one of 16
conditions varying by error timing (beginning, end, random, or
never), severity (high vs. low), and context, and then rated their
trust in the classifier and provided qualitative feedback.

We ask the following research question:

RQ: How does the severity and timing of AI errors jointly shape
trust in an AI classifier?

Our work makes the following contributions:

(1) We demonstrate how the timing and severity of false-positive
errors impact user trust, particularly in high-stakes contexts,
offering guidance for ethical and transparent AI design.

(2) We conduct a thematic analysis of user responses to surface
key concerns and perceptions of AI reliability.

(3) We highlight the potential for user manipulation through
interaction design that exploits recency bias and obscures
accountability.

(4) We propose a preliminary set of design patterns that may
warrant regulatory oversight, even in domains not currently
classified as high-risk.

With this work, our goal is to deepen our understanding of how
and when AI errors erode trust, while also identifying policy and
design interventions to ensure user safety and trust are protected.

2 BACKGROUND AND MOTIVATION
When referring to trust in our paper, we adopt Rousseau et al.’s
definition: “a psychological state comprising the intention to accept
vulnerability based upon the positive expectations of the intentions
or behavior of another”[61].

2.1 Recency Bias
Multiple studies in human–robot interaction (HRI) investigate the
effects of recency bias (where mistakes occurring later in an interac-
tion disproportionately reduce participant trust compared to earlier
mistakes) when humans interact with robots. For instance, When
a robot fails at the end of a task, participants’ post-experiment
trust in the robot and the perceived competence of the robot drops
significantly compared to the instance where the robot fails early
or mid-task [38]. However, Rossi et al. observed a different pattern,
where severe errors at the beginning of an interaction significantly
impacted participant trust compared to those at the end [59]. These
conflicting findings suggest that timing and severity of errors in-
teract in complex, context-dependent ways [10, 45], indicating the
need for more systematic exploration.

2.2 Severity of Errors
Studies also provide contrasting outcomes on the impact on how
the severity of errors impacts trust, lacking clarity on how or if
severe errors over shadow minor ones. Rossi et al. found that trust

decreased the most when a companion robot made mistakes with se-
vere consequences [59]. Correia et al. similarly noted that if a social
robot’s error led to high-stakes consequences, trust repair attempts
including explanations would become largely ineffective [10]. How-
ever, perceptions of severity can vary considerably across different
domains: minor errors may be forgiven in casual tasks but seen as
critical failures in medical or military scenarios [69]. This variability
underscores the importance of explicitly addressing contextualized
severity when studying AI-induced trust erosion.

Focus on False Positives. Many studies on AI error perception do
not distinguish between false positives and false negatives, despite
growing evidence that these error types can shape trust in distinct
ways [29]. Our study isolates false positive errors, instances where
something harmless is incorrectly flagged as dangerous, to examine
their specific impact on trust and to maintain experimental clarity.
Including false negatives in this study may have required additional
conditions and potentially introduced confounds that obscure the
effects of timing and severity, as both prior studies [11, 30] and our
initial stimuli validation showed that users responded differently
to false-positives and false-negatives.

As AI systems grow more persuasive and influential in shaping
human decisions [53], error distinction becomes increasingly im-
portant. Kocielnik et al. [30] found that users respond differently to
false alarms versus missed detections, suggesting that the accept-
ability of false positives depends heavily on the perceived cost of
ignoring them. By focusing exclusively on false positives, our study
aligns with high-impact, real-world use cases where these errors
are both common and consequential, e.g., where operators must sift
through alerts, many of which may be false and undermine trust
in the system, leading to severe consequences [1, 18, 23, 30, 67]. In
high-stakes settings, false positives can lead to operational disrup-
tion or undue censorship [29], and users may respond differently
to flagged harmless content than to missed threats.

Interestingly, some media framing research suggests that se-
vere false negatives are sometimes overlooked or rationalized if
the outcome is catastrophic [11]. These differences led us to focus
exclusively on false positives in our study, allowing us to isolate
their unique impact on trust while maintaining experimental con-
trol over severity and timing effects. We leave the study of false
negatives to future work.

2.3 Context Sensitivity
Research has shown that domain context influences trust accep-
tance [20, 60, 64, 68]. In low-risk domains like chatbots, users are
more forgiving of AI errors, whereas high-stakes scenarios mag-
nify the detrimental impact of errors on trust [60]. Understanding
how these contextual factors shape trust within the same task is
crucial to understanding the nuanced role that severity and timing
play when AI makes an error, particularly while controlling for the
varying consequences between false positives across domains.

2.4 Trust Constructs and Vulnerability
Trust inherently involves vulnerability, distinguishing it from mere
confidence. Vereschak et al. emphasize that a meaningful element of
risk or potential loss is necessary for genuine trust to develop [65].
For example, if the user has little to lose fromAI’s classification error,
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theymight remain ‘confident‘ in the AI’s abilities but not truly ‘trust‘
it with critical decisions [65]. Our study explicitly incorporates this
distinction by comparing high-vulnerability (military defense) and
lower-vulnerability (social media moderation) contexts. We also
directly ask participants about their confidence in the AI device
and measure their reported levels of trust in the AI device.

2.5 High-Stakes Implications
Research on timing and severity is relatively understudied in col-
laborative, high-stakes AI, and real-world AI systems. Previous
studies have often used simulated robots and moderate risk scenar-
ios [38, 60], lacking clear applicability to real-world contexts like so-
cial media monitoring, military tasks, or cybersecurity, where false
positives can lead to alert fatigue and significantly erode trust [1, 40].
As automation evolves, studies find that user trust can quickly be
lost if too many false alarms occur or if an AI shows incompetent
classification in critical tasks [65]. Accuracy thresholds accepted in
everyday scenarios (e.g., 80–90%) may be deemed by users as being
insufficient in critical domains, highlighting the need for focused
exploration of these dynamics [65].

2.6 Novelty and Positioning Our Study
To address these gaps, we focus on study controls to limit con-
founds by isolating false positive AI misclassifications. We compare
two real-world contexts (Military vs. Social Media) across simi-
lar tasks, differentiate between confidence and trust, and measure
participant bias and expertise with AI. We build on contradictory
findings around timing (do early or late mistakes matter more?)
and severity (how do ‘critical errors’ differ from minor ones?), seek-
ing to understand how and when these mistakes shape user trust.
Our mixed methods approach measures quantitative trust changes
across conditions and incorporates qualitative feedback to explain
how users perceived different conditions. We also analyzed user
perspectives on accountability, ethics, performance, and provide
considerations for the misuse that our findings could lead to. In
doing so, we hope to refine practical guidelines for designers, policy
makers, and provide the community at large with insights on how
severity and timing impact user trust.

Traditional automation literature, such as work by Lewicki et
al. and Parasuraman et al., emphasizes relatively transparent, pre-
dictable systemswhere errors are easily identifiable and diagnosable
(e.g., mechanical failures or predictable performance degradation
in machines) [36, 37, 51]. In these scenarios, errors are often easily
identifiable and explained (e.g., a misaligned ‘arm’ of a machine)
allowing users to visually or intuitively diagnose failures and recal-
ibrate their trust accordingly.

However, AI-specific trust dynamics diverge significantly from
these traditional automation models due to unique characteristics
inherent to AI systems:

Transparency and Explainability: Unlike conventional au-
tomation, many AI systems function as ‘black boxes’, where the
internal decision-making processes are not clearly defined and out-
puts are often difficult to trace back. This lack of transparency
makes it more difficult for users to accurately diagnose errors from
AI systems, compared to traditional automation scenarios, where

upon physical examination, the user could deduce what may be
causing a problem.

Contextualized Severity of Errors: Where traditional au-
tomation typically frames errors in binary terms (failure vs. non-
failure) [37], AI misclassifications often vary significantly in sever-
ity [1] and are perceived differently depending on the specific real-
world context [1, 18, 67]. This complexity requires a more nuanced
understanding than is provided by existing automation frameworks.

Manipulation Risks: AI systems introduce a novel risk: the
potential for deliberate trust manipulation by leveraging human
psychological biases and emotional responses [25, 32, 66]. Unlike
traditional automation, AI can be designed or exploited to strategi-
cally sequence outputs inways that increase perceived reliability [4].
Recent work even shows that some AI agents can deceive users
or obscure their own mistakes to maintain trust [5]. This raises
ethical concerns not fully addressed in earlier automation literature,
particularly around the exploitation of cognitive biases such as the
recency effect.

Our study directly addresses these concerns by examining how
the timing and severity of AI misclassifications interact to shape
trust across high- and low-stakes domains (military defense vs.
social media moderation). Through a controlled experimental de-
sign and mixed-method approach, combining quantitative trust
ratings with qualitative user feedback, we extend existing research
paradigms on trust in AI. This approach not only deepens our
theoretical understanding but also offers practical insights for de-
velopers, regulators, and policymakers seeking to mitigate trust
distortion and prevent manipulative design patterns in emerging
AI systems.

3 METHODOLOGY
This section details our methodology, describing our study design,
data collection, trust measurement, and analysis procedures. We
conducted an online experimental study examining how the sever-
ity (high vs. low) and timing (beginning, end, random, never) of AI
misclassifications influence user trust across two contexts (Military
vs. Social Media). We explicitly investigated false positive errors,
motivated by the distinct implications they carry in high-stakes
domains [29]. The study contexts were carefully chosen to avoid
overgeneralization and to evaluate whether the effects of AI mis-
classifications were context dependent. While our study did not
directly frame context as manipulation, we studied two distinct
contexts to prevent overgeneralizing from a specific context and
evaluate whether the observed effects are limited to a single do-
main. Previous studies have also studied context specific effects
of AI, looking at context specific domains such as social media
monitoring, military domains, and even cybersecurity [1, 18, 67].
We conducted an initial stimulus validation study to confirm which
images participants deemed ‘high severity’ or ‘low severity’ in each
context.

3.1 Design
3.1.1 Severity Validation. To ensure experimental validity, we per-
formed an initial stimulus validation study (n=117) to confirmwhich
candidate images participants perceived as ‘high severity’ or ‘low
severity’. Participants rated 30 candidate images depicting false
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positive scenarios as either ‘highly severe’ or ‘not severe’, corre-
sponding to numerical values of 1 and -1, respectively. We then
calculated the mean severity score for each image. Images with a
positive mean were labeled as ‘high severity’, those with negative
means as ‘low severity’, and those near zero as ‘neutral’. We selected
14 images per context (4 high-severity, 4 low-severity, 6 neutral) for
use as misclassification stimuli in the main study. See Appendix A.7
for information on image source and usage.

3.1.2 Participant Recruitment and Experimental Procedure. We re-
cruited participants through Prolific,1 an online research platform,
initially receiving responses from 390 individuals. We conducted
the main survey on Prolific for one month (September 2024). We
implemented the survey in small batches of participants on differ-
ent days of the week and at different times of the day to minimize
any kind of temporal bias. After filtering out participants who
failed attention checks (failing even 1 of the 6 attention checks
resulted in disqualifying the participant from our analyses, how-
ever, participants were paid regardless), the final sample consisted
of 364 participants. The sample was predominantly White (75%),
with representation from Asian (11%), Black (8%), and other/mixed
racial backgrounds (6%). The participants ranged in age from 18
to 71 years, and 53% identified as women, 44% as men, and 3%
as non-binary or other gender identity. Education levels ranged
from high school to postgraduate degrees, with the largest portion
(45%) holding a bachelor’s degree. (see Appendix A.1 Table 3 for
full demographics). Participants were randomly assigned to one
of 16 between-subject experimental conditions, where they were
randomly assigned to a context (Military vs. Social Media), a sever-
ity (high vs. low), and a time of misclassification (beginning, end,
random, or never/control condition). Each participant viewed 14
images with only one misclassification per session (simulating a
92% accurate AI classifier). The participants with control conditions
(no mistakes) did not encounter any mistakes from the classifier.
In non-control groups, the single misclassification appeared at the
beginning (first image), end (last image), or randomly somewhere
in between.

Participants were instructed to assume domain-specific roles, ei-
ther as military operators assessing security risks or as social media
moderators identifying harmful content to children, to mimic real-
istic engagement. For the social media context, the study prompted
the participants to work with the AI device to moderate harmful
images for children. For the military context, participants were
asked to work with the AI device to identify if the AI-based image
classification was a security risk. This approach ensured that partic-
ipants adopted domain-specific mindsets before encountering the
images. After going through all the images, participants rated their
trust in the AI classifier on a 5-point Likert scale. The entire sur-
vey was conducted on Qualtrics (see Appendix A.2 for the survey
instrument).

3.1.3 Individual Differences and Covariates. Prior experience with
AI, subjective expertise, and trust propensity can all shape the way
users interpret errors [9, 52, 54, 65]. For example, negative prior
experiences may amplify the perceived impact of even a minor

1https://www.prolific.com/

failure [39, 65], while self-efficacy and confidence may buffer dis-
trust [39]. To account for these individual-level factors, our study
measured participants’ prior experience with AI, trust propensity,
perceived and actual AI expertise, self-reported confidence and
satisfaction with the AI system, and personality traits related to
trust and technology interaction(see Appendix A.3 for scales and
measurements).

3.1.4 AI Accuracy Selection. Informed by the AI Index Report
2024, which identifies typical AI benchmark accuracies between
80-90% [41], we set our simulated classifier accuracy at 92% (one
misclassification per 14 images). This design choice balances realism
with our experimental controls.

3.1.5 Ethical Considerations and Participant Compensation. Our
protocol was approved by the ethics committee of our institution.
We used Prolific to recruit participants, and each participant pro-
vided informed consent and was debriefed upon completion, espe-
cially regarding the partially simulated nature of the AI device. The
participant data was stored in anonymized form and no personally
identifiable information was retained. All procedures complied with
local and institutional guidelines for ethical data handling.

We conducted several online pilot studies to determine the ap-
proximate time range required to participate in the study. The
average time taken for the study was almost 14 minutes. Regardless
of whether or not we used their responses, each participant received
$12 per hour. The payment amount is in line with and surpasses
the recommendation in Silberman et al. [62] to pay workers at least
minimum wage in the study’s location.

3.2 Data Analysis
3.2.1 Quantitative Analyses. The measurement of trust in AI used
a 1-5 Likert scale and showed mild non-normality. Although mild
non-normality was detected, large samples (n= 364) and minimal
skew justify OLS-based parametric methods [19, 49]. The main in-
dependent variables were context, severity, and timing. Additional
measures (AI accuracy perceptions, confidence, NASA load, per-
sonality) served as descriptive factors. The p-values in our analysis
were adjusted using the Bonferroni method [3, 14] to address multi-
ple comparisons and reduce Type 1 errors. We applied an ordinary
least squares (OLS) linear model with context, severity, and mistake
timing as fixed factors. The residuals passed normality tests. We
used a Type III ANOVA for main and interaction effects, followed
by post hoc pairwise comparisons with Bonferroni corrections to
maintain a family-wise error rate. Moreover, we reported p-values
with 95% confidence intervals.

3.2.2 Qualitative Analysis. We collected two open-ended responses
to gain deeper insight into participants’ reasoning and emotional
reactions to misclassifications. We asked participants the following
questions:

(1) “Overall, what did you think about the performance of the AI
device you just interacted with?Would you trust this device?
Why or why not?” and

(2) “What were your initial impressions of the AI device? Did
your impression change later on? Why or why not?”

We analyzed the responses using a thematic approach as de-
scribed by Braun andClarke, performing iterative coding inDelve [7].

https://www.prolific.com/
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The researchers independently coded responses in a bottom-up ap-
proach and completed iterative passes using the Delve tool, and
analytic memos and self-checking were in place for consistent code
usage over time. We chose to perform a thematic analysis because,
although our work is informed by relevant theories such as human
trust, (a) we did not directly derive our coding from those theories
and (b) we did not set our goal to build new theories in our work.
We came up with three main themes which are described in Sec-
tion 4. In line with common practice, we did not seek to compute
inter-rater reliability since we focused on a thematic analysis based
on multiple iterations of meetings and refinement of the codes
to determine emergent themes (these codes were not used in our
quantitative analysis) [2, 42]. The process is outlined below:

(1) Familiarization. The researchers read through all responses
(n= 364), noting any repeated words or phrases (e.g., “I would
/ wouldn’t trust it,” “It was accurate,” “The mistakes were
serious and unacceptable”). Short analytical memos captured
first impressions and concepts.

(2) Initial Coding. In the second pass, segments of text from the
responses were assigned tags (e.g., ‘Severe mistake’, ‘loss
of trust’, ‘high accuracy’). The codes were later extracted
inductively from the data.

(3) Theme Search and Refinement. The related codes were then
grouped into candidate themes (e.g., ‘Distrust’ vs ‘Trust but
verify’), and then reviewed them across the entire dataset to
ensure internal coherence and mutual exclusivity.

(4) Self-Audit. Approximately 15% of the responses were re-
coded after initial codes to check intra-coder agreement.
Minor mismatches led to clarifications and improved theme
definitions.

Combined Themes: While we coded responses separately, shared
themes across questions arose naturally. We combined themes
across the two questions due to the following justifications:

(1) Overlap in Participant Reasoning: Participantswho distrusted
AI due to severe misclassification (Q1) often cited similar rea-
soning when explaining how their trust changed over time
(Q2). Given this overlap, structuring the findings strictly by
question would have led to redundant discussions of the
same themes.

(2) Preserving a Cohesive Narrative: Our study focuses on trust
shifts over time. Organizing findings thematically rather
than by question structure best supports this aim.

This approach aligns with qualitative research best practices,
particularly thematic analysis [7], which focuses on identifying
patterns of meaning across datasets rather than restricting themes
to the structure of specific questions.

By integrating these qualitative findings with our quantitative
trust measures, we gain a deeper understanding of how timing and
severity shape user perceptions.

Limitations: While we maintained all codes in Delve and ap-
proached coding through iterative processes, we acknowledge that
coders can introduce subjective bias. Future research may involve
multiple coders from different backgrounds to further validate the
themes.

4 FINDINGS
We analyzed trust in AI using an ordinary least squares (OLS) linear
model with fixed factors for context (Military vs. Social Media),
severity (High vs. Low), and timing (Begin, End, Random, Never).
Significant effects from a Type III ANOVA are summarized in Ta-
ble 1. An omnibus test was run involving the standard fixed-effects
model, analyzing the following: Trust in the AI, the severity of
the misclassification, the timing of the misclassification, and the
context in which the misclassification occurred. This table is shown
in Appendix A.1 Table 5.

Severity, timing, and the interaction of severity and timing showed
significant effects on trust in the AI device. A post hoc pairwise
comparison revealed that contextual differences emerged between
military vs. social media. In the following sections, we present our
key findings.

4.1 Quantitative Results
4.1.1 Main Effects. The severity of the misclassification signifi-
cantly influenced participant trust, with a small to moderate effect
size [34] (𝜂2𝑝 = 0.04), suggesting that severity has a modest, but sig-
nificant impact on trust. Trust ratings were lower in high-severity
conditions with an average trust rating of 3.03, out of 5 (See Ap-
pendix A.1 Figure 2) compared to the low-severity condition, with
an average trust rating of 3.27.

The timing of the misclassification also significantly affected
trust ( p < .001 see Table 1). Participants exposed to errors at the
end reported the lowest trust at 3.01, while participants without
errors reported the highest trust (see Appendix A.1, Table 6).

Context did not show significance as a main effect (p>0.05); con-
text differences were further examined through pairwise contrasts
(See Table 1 and Appendix A.1 Table 5).

Table 1: Significant Factors in a Type III ANOVA on Trust in AI

Effect df F p 𝒏2𝒑

Severity 1, 348 4.28 .039 0.04
Mistake timing 3, 348 6.90 <.001 0.04
Severity × Mistake timing 3, 348 4.34 .005 0.04

Note. Only significant effects are shown (p < 0.05). The
effect size 𝜂2𝑝 (partial 𝜂2) can be interpreted as small
if 𝜂2𝑝 = 0.01, medium if 𝜂2𝑝 = 0.06, and large if 𝜂2𝑝 =

0.14 [34].

4.1.2 Interactions. When analyzing the results of the ANOVA, we
found a significant interaction effect between timing and severity
(with a small to moderate effect 𝜂2𝑝 = 0.04). Specifically, trust ratings
were lowest when high-severity errors occurred at the end of the
sequence (mean trust = 2.72, see Appendix A.1 Table 6) highlight-
ing that severe errors late in interaction substantially erode trust
compared to other conditions, with statistically significant results
presented in Table 2 (See Figures 3 and 4 in Appendix A.1 for mean
trust across severity and timing).

4.1.3 Pairwise Contrasts. Although context did not reach signif-
icance in the overall ANOVA, we conducted additional pairwise
comparisons to examine context-specific effects to see if certain
severity-timing interactions might be amplified differently across



PR
E-P

RIN
T

FAccT ’25, June 23–26, 2025, Athens, Greece Freel et al.

contexts. Table 1 presents all significant pairwise comparisons from
Bonferroni-adjusted emmeans analyses. Pairwise contrasts (Table 2)
revealed significant differences primarily within the military con-
text. High-severity errors at the end significantly reduced trust
compared to other military conditions (all p < 0.01). No significant
contrasts emerged within the social media context, underscoring
the heightened sensitivity to timing and severity in military con-
texts.

Table 2: Significant Pairwise Contrasts for Trust in AI

Contrast Estimate p-value

Military high end – Military low random -0.8480 0.0002***
Military high end – Military low never -0.8099 0.0009***
Military high end – Military high never -0.8518 0.0003***
Military high end – Military low end -0.9145 <0.0001***
Military low begin – Military high end 0.7448 0.0041**
Social Media high end – Social Media high never -0.55055 0.3434
Social Media high end – Social Media low never -0.27602 1.0000

Note: Pairwise comparisons were computed using emmeans(..., adjust =
‘bonferroni’). (* = p < 0.05, ** = p < 0.01, *** = p < 0.001).

Within the military context, significant interactions emerged
based on timing and severity. When a high-severity error was
shown at the end of the stimulus, participant reported levels of
trust dropped significantly compared to Military-high-never (con-
trol condition). There were no significant interactions when analyz-
ing the social media context (p > .05). Figure 2 illustrates the mean
trust levels across all conditions.

Figure 1: Bar graph with error bars illustrating mean trust levels
across conditions.

Excluding No-Error Conditions: Re-analysis excluding the
no-error (control) conditions confirmed that severity (p=0.043) and
timing (p=0.047) remained significant as main effects. Although the
severity-timing interaction weakened (p=0.08), the trend persisted:
late, severe errors consistently led to the largest trust reduction.

The random timing conditionwas still not significant, reinforcing
that trust erosion is not solely about the presence of errors, but their
strategic placement. We acknowledge Bonferroni corrections are
highly conservative, potentially attenuating statistical significance.

Overall, high-severity mistakes significantly reduced trust com-
pared to low-severity mistakes, especially when these mistakes
occurred at the end of the stimulus or in a high-stakes military
context. The Social Media context found comparatively smaller
drops in trust overall.

4.2 Qualitative Results
After the stimulus, we asked participants to answer two open ended
questions to understand why they trusted or distrusted the AI de-
vice, and how and why their impressions of the AI might have
changed. We followed Braun and Clarke’s thematic analysis guide-
lines [7], and collected responses (n = 364) to the following two
open questions:

(1) “Overall, what did you think about the performance of the AI
device you just interacted with?Would you trust this device?
Why or why not?”

(2) “What were your initial impressions of the AI device? Did
your impression change later on? Why or why not?”

We analyzed open-ended participant responses (n=364) using
thematic analysis, revealing five primary themes: (1) Ethics and
Accountability, (2) Errors Leading to Distrust, (3) Contextual Dif-
ferences, (4) Desire for Human Oversight, (5) How Error Timing
Impacts Trust.

4.2.1 Theme 1: Ethics and Accountability. Multiple participants
mentioned that ethics and or accountability influenced their levels
of trust, and lead to distrust. The responses convey that participants
critically think about the effects of accountability as it relates to
AI, especially when AI is classifying sensitive information. Their
responses reflect that they feel that AI systems lack the same mech-
anisms for accountability that humans have, such as legal or moral
responsibility when mistakes occur. This highlights a broader pub-
lic concern about how, if at all, we can hold AI responsible if harm
is done, and raises questions about policy and fairness. Participants
also acknowledge that AI “can’t think or comprehend nuance”, un-
derlining that ethical decision making often involves human facets
such as context, empathy, or moral reasoning, which participants
view as lacking in current AI. They noted AI’s incapability to grasp
nuances necessary for ethical decision-making, especially in high-
stakes scenarios.

4.2.2 Theme 2: Errors leading to a sense of distrust. Participants
often cited errors as the reason for distrust in the AI system. Mean-
while, accuracy was frequently cited as reason for trust in the
AI system, indicating that users who perceived the AI as being
more accurate were also more trusting of the AI device. The high
co-occurrence of ‘Distrust‘ and ‘Errors (Reason for Distrust)’ is a
clear indicator that when participants mention an error, they often
simultaneously mention losing trust.

Additionally, codes that were tagged as ‘High-Severity Reactions’
often mentioned that the device’s error could lead to serious conse-
quences. The severity of the error was often described as the main
reason participants would not trust the system. Participants stated:

“I would not trust the device. The mistake it made could
have ended lives in a scenario where a human would
not have made that mistake.”

and
“It ‘only’ made one mistake, but it was a really big one.”

This qualitative analysis indicates that in general, participants
viewed mistakes as untrustworthy, especially if the consequences
of the mistake could be severe. This indicates that participants are
critical of the AI device when severe errors are made, even if it



PR
E-P

RIN
T

How Misclassification Severity and Timing Influence User Trust in AI Image Classification FAccT ’25, June 23–26, 2025, Athens, Greece

was cited as being accurate overall. The participants’ comments
indicate that a severe error may override high accuracy when it
comes to trusting the AI device. This aligns with our results in
the quantitative analysis, where mean trust scores were greater in
the “low severity“ conditions (3.27) compared to the ‘high severity’
conditions (3.03). This also explains the quantitative results where
mean trust scores in the high-end conditions (2.72) were less than
the low-end conditions (3.35).

4.2.3 Theme 3: Contextual Differences. Depending on the con-
dition, participants’ responses to errors and their reported trust
differed. In themilitary context, participants weremore likely to cite
severe consequences associated with errors, expressing heightened
distrust. High-severity military conditions elicited more frequent
mentions of ‘Distrust’, ‘Errors (Reason for Distrust)‘, and ‘High
Severity Reaction’. Participants were less forgiving of severe errors
due to higher perceived stakes in this context:

“I wouldn’t trust it. It was accurate overall but its mis-
takes were serious and unacceptable.”

Conversely, in the military context, participants in ‘low-severity’
or ‘never misclassified’ conditions were more inclined to note ‘Posi-
tive Performance,’ ‘Accuracy (Reason for Trust),’ and ‘Positive Trust.’

In social media contexts, participants generally had fewer codes
for ‘High Severity Reaction’, indicating that mild or occasional
errors were more tolerable. As one participant said,

“The AI device onlymade onemistake, tomy recollection,
which is very accurate... I would trust the device to
classify concrete things for me.”

Furthermore, within the social media context, we saw less fre-
quencies for the code ‘Distrust’, across severity levels. This suggests
social media participants may not see an equally dramatic risk differ-
ence, or that the risk of the mistake doesn’t outweigh its usefulness
in the situation.

These observations suggest that individuals weigh risks differ-
ently depending on the consequences of the mistake and may be
more forgiving of errors if the consequences are minor.

4.2.4 Theme 4: Participants’ Desire for Human Oversight. Com-
ments from our participants highlight their preference for human
oversight when interacting with the AI device, especially under
high-severity or uncertain conditions. This was true across both
contexts, with participants expressing that they would want ad-
ditional oversight before trusting the AI device or verification of
the AI’s classifications. Across contexts, participants expressed a
strong preference for human oversight, advocating a ‘trust but
verify’ approach:

“I would only trust this AI device if a human has the
final say and reviews what the AI has classified.”

This emphasizes the essential role of humans in high-stakes AI
decisions.

4.2.5 Theme 5: Error Timing influences Perception and Trust. Within
the social media context, the High-Begin condition was often coded
with ‘Shift: Negative to Positive’ indicating that while the initial
impression was negative, over time, the impression shifted to a
more positive impression. The most cited reason for this shift was

‘Reason for shift: Accuracy/Performance’. The comments from par-
ticipants suggest that within the social media context, participants
are more likely to shift their initial negative impression to a positive
impression of the AI device.

“I thought it was bad because it misclassified in the
first one. Once it started classifying everything correctly
my impression changed. It went from bad AI tool to
surprisingly really good AI tool.”

In military contexts, participants were less forgiving when high-
severity errors occurred early, and they remained cautious even if
subsequent classifications were correct. These results mirror our
quantitative findings, where early errors were easier to recover from
if the stakes were low, but high-severity initial errors significantly
lowered trust scores.

The most cited reason for a negative to positive shift was the
accuracy / performance of the AI device. This indicates a potential
for trust repair when errors are minor or occur early enough that
subsequent correct classifications rebuild confidence. However, this
did not hold true during the high-severity misclassifications at the
beginning in the military context, with participant’s citing that
severe initial errors in military contexts were harder to recover
from, reflecting quantitative findings regarding timing-severity
interactions.

“It got the first one wrong and all the other ones right,
but that doesn’t mean anything. It’s capable of making
substantial mistakes, and therefore should always be
checked by humans for error.”

These responses echo our quantitative severity and timing effect,
where we see a higher mean trust score for begin (3.11) compared
to end (3.01), and help explain our significant finding for timing
in the Type III ANOVA. Participants may be willing to regain a
positive perception when the stakes are low, but become intolerant
if the mistake is at the end, especially if it is a severe mistake.

4.2.6 Qualitative Findings Summary. In sum, our qualitative analy-
sis highlighted four core themes that connect the trust (or distrust)
of participants with AI misclassifications, and insights from our
qualitative analysis about ethics and accountability. Overall, our
thematic analysis reveals:

(1) Ethics and Accountability concerns, where participants worry
about AI’s inability to assume moral or legal responsibility;

(2) Errors Leading to Distrust, especially when severity is high;
(3) Contextual Differences, with the military setting generating

more apprehension than social media;
(4) Desire for Human Oversight, exemplifying a “trust but verify”

mentality;
(5) Error Timing Effects, showing that early mistakes can be

forgiven if accuracy later improves—unless the severity is
extreme.

4.2.7 IntegratingQuantitative andQualitative Findings. Integrating
both analyses reveals robust insights:

(1) Late severe errors profoundly erode trust;
(2) Early errors permit trust repair, particularly in low-severity

conditions;
(3) Higher stakes intensify the negative impact of severe errors;
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(4) Users demand ethical accountability and human oversight
in AI deployments.

Overall, these combined results underline critical considerations
for responsibly deploying AI in high-stakes domains, emphasiz-
ing transparency, timing, severity management, and maintaining
human involvement.

5 DISCUSSION
Our findings show that trust in AI is not affected by just what the
system gets wrong, but when and how those errors occur, revealing
new vulnerabilities that current risk frameworks may overlook.

5.1 Effect of Timing And Severity
With regard to the timing of errors, our findings indicate that par-
ticipants were more likely to distrust the AI device when it made
mistakes at the end of the interaction, compared to when the AI
device made no mistakes, made mistakes at the beginning, or made
mistakes randomly throughout the interaction. This effect is likely
driven by the recency bias [38]. In addition, late mistakes also limit
the opportunity for trust repair, while earlier mistakes may be
forgiven over time if the AI performs reliably afterward [27].

For the severity of errors, our findings indicate that severe errors
cause a significant decrease in trust, compared to errors that are
not as severe. This has also been supported by studies and may
be due to people’s sensitivity to nuance and the consequences of
errors [16, 58–60].

Our study reveals a critical interactive effect between the timing
and severity of AI misclassifications on user trust. Specifically, we
found that severe errors occurring late in an interaction dispropor-
tionately erode trust, particularly within high-stakes contexts, even
when the AI has demonstrated accurate performance up until the
point of error. This central finding extends previous research that
has often examined these dimensions in isolation [27, 63].

5.2 Trust Repair
Our findings have important implications for trust repair mecha-
nisms. Current pathways for rebuilding trust may prove insufficient
when users encounter a severe error towards the end of an interac-
tion, especially in high-stakes environments. Participants in our mil-
itary security condition, for instance, showed significantly reduced
trust after a final, severe misclassification, despite previous error-
free performance by the AI. This aligns with research suggesting
that trust repair is most effective when errors are moderate, recov-
erable, and followed by observable improvements over time [6, 16].
When these conditions are unmet, as in our high-severity, late-error
scenarios, users in high-stakes contexts appear less able or willing
to restore their trust in the system.

Importantly, our findings complicate the notion that trust repair
is consistently fragile across contexts. While prior work emphasizes
the difficulty of rebuilding trust after a failure [15, 27, 37], our results
show that users were often forgiving of early errors (including
errors that were severe at the beginning), especially in low-stakes
contexts.

We found that participants were more forgiving of severe late
errors in the social media context, but were significantly less forgiv-
ing in the military context. Late severe errors in the military context

consistently eroded trust, however, no significant trust drop was
observed in the social media context, even for the same combina-
tion of severity and timing combination. This suggests that domain
context, severity, and timing can buffer the impact of severe error
patterns, supporting the view that trust erosion depends not only
on the technical properties of the error (e.g., type or severity), but
also on users’ subjective interpretations of how relevant or risky the
error is within a given context and sequence. We found that many
participants rationalized the errors (especially in the social media
context), citing the system’s overall accuracy or downplaying the
perceived consequences. This suggests that domain context can
buffer the impact of even severe, late-stage errors, allowing trust to
be maintained when users interpret mistakes as less consequential.

This asymmetry underscores that trust repair is not only sensi-
tive to timing and severity, but that trust is also deeply contextually
sensitive, breaking down when errors are late, severe, and high-
stakes, but remaining surprisingly resilient when the stakes are
lower or errors occur earlier. Rather than viewing trust repair as
a consistent or necessary response after any error, our findings
suggest that participants tend to rationalize errors irrespective of
timing if they are perceived as minor. This highlights the need to
model trust dynamics as a function of severity, timing, and per-
ceived domain risk.

This also points to an urgent design challenge: How can future
systems proactively buffer trust when post-hoc repair is no
longer possible (for example, through transparency or preemptive
error disclosure) and how can this be done ethically? We explore
this further in the following section.

While prior work has suggested a potential threshold effect
(where trusts drops similarly after any noticeable of its sever-
ity) [15, 39, 63], we find a more nuanced pattern. In our study,
low-severity errors or those that occured early in the interaction
did not significantly impact user trust. In contrast, severe, late stage
errors (especially in high-stakes domains) led to the most signifi-
cant trust erosion. This suggests that distrust is not automatic after
any error, but is instead shaped by timing, severity, and contextual
risk.

Our findings also complement research on how error type and
perceived harm shape trust [28, 47], by showing that even false
positives—when severe and strategically timed—can override prior
positive impressions. In contrast, the same error introduced earlier
or in a lower-risk context may be rationalized and forgiven. This
contextual asymmetry adds nuance to models of trust calibration,
showing that both where and when an error occurs can reshape
how users assess an AI system’s reliability.

Together, these findings reveal temporal and contextual vulner-
abilities in how users form and recover trust—vulnerabilities that
may be unintentionally exploited by existing interaction design
choices. While we did not directly test malicious systems or be-
havioral nudging, the patterns we observed support a set of strong
hypotheses: that systems may shape trust not merely through mis-
information, but through strategic placement of accurate and inac-
curate outputs that exploit cognitive biases like recency.
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5.3 Manipulating Timing and Severity to
Overinflate Trust

Our study shows that early severe errors in low-stakes contexts,
such as the high-beginning condition in the social media scenario,
did not significantly reduce trust and, in some cases, trust was par-
tially or fully restored by the end of the interaction. This pattern sug-
gests that users may regain trust even after serious errors, as long
as subsequent system behavior appears accurate and the perceived
risk remains low. From this, we hypothesize that systems—whether
intentionally or through optimization—could present misinforma-
tion or less accurate outputs early, followed by high-confidence
or correct outputs later, thus inflating perceived reliability despite
prior faults.

Although we did not test such manipulative sequencing directly,
this finding raises important concerns: a malicious actor (e.g., a
misinformation campaign or compromised recommender system)
could inject subtle inaccuracies early in a session and end with
persuasive, accurate statements, reinforcing trust while gradually
shaping user beliefs. Our results suggest that unless the misinfor-
mation is both severe and recent, users may not only forgive it,
they may rationalize or discount the errors.

Designing Interactions to Nudge Confidence. Our data also show
that late-stage severe errors in high-stakes domains produce a sharp
collapse in trust, but the same severity in early or low-stakes con-
ditions did not. This asymmetry implies that designers and sys-
tem developers could, even unintentionally, shape user confidence
through timing alone. For instance, systems optimized for engage-
ment or perceived fluency might favor ending interactions on a
‘high note’, exploiting recency effects to secure user satisfaction,
even if earlier outputs were flawed.

However, we emphasize that these risks are not limited to mali-
cious actors. Reward-maximizing systems, particularly those trained
through reinforcement learning, can learn such timing patterns
autonomously, and even engage in deceptive behaviors [5, 8, 35].
As such, the potential for emergent manipulative design patterns is
not just theoretical; it is a realistic system behavior if trust becomes
a proxy objective.

From Hypothesis to Oversight. We present these not as claims
of current deception, but as hypotheses generating risks, derived
from the empirically observed trust asymmetries in our study. Fu-
ture work should test these patterns explicitly and at scale. In the
meantime, we recommend greater transparency, interaction logs,
and auditability in AI outputs, especially with respect to temporal
sequencing, confidence signaling, and error history visibility, to
protect users against subtle manipulation and to foster calibrated
trust for human-AI systems.

5.4 Ethical Concerns and Transparency
Participants expressed concerns that AI systems cannot be ‘held ac-
countable’ the way humans can, leading to distrust in high-severity
contexts. However, this was not always echoed in low-severity con-
ditions orwhen errors wereminor. Prior work has highlighted users’
general desire for transparency and control in AI systems [33, 46].
We build on these findings but argue that mere discomfort or pref-
erence is not the full story, and that transparency is also essential

to protect users from manipulation, and not just to support user
satisfaction.

Our contribution extends this body of work by showing how
users’ cognitive biases can be exploited through timing based inter-
action design, especially when systems lack transparency. While
participants voiced concern when AI failed in high-risk settings,
they often downplayed minor or early errors in low-risk contexts.
We show that even low-risk systems can shape trust through timing
and severity. When error history is hidden and confidence signals
are concentrated at the end, users may remain unaware of critical
missteps. This suggests that transparency should not just be about
usability, it should also be treated as a safeguard against subtle trust
distortion.

5.5 Toward Calibrated Trust and Human–AI
Collaboration

These findings contribute to a broader goal of fostering calibrated
trust in AI systems. By identifying how trust is shaped dispropor-
tionately by error timing and severity, designers can better align
system behavior with user expectations. Rather than eliminating
all errors, promoting transparency, supporting trust repair, and mit-
igating security vulnerabilities, may improve both user experience
and ethical deployment of AI.

5.6 Security and Logging for Temporal
Manipulation Risks

Our findings highlight timing and severity as underexplored di-
mensions of trust erosion. Although these insights emerged from
a single controlled experiment, they raise credible concerns about
how temporal sequencing might be manipulated, either deliberately
or through optimization objectives. We recommend that systems
handling sensitive outputs maintain tamper-proof, chronological
logs (e.g., using cryptographic hashes) to preserve the integrity of
interaction histories. Such logs could serve as safeguards against
undetected injection or reordering of outputs that might distort
trust over time.

5.7 Design Patterns as Hypothesis-Generating
Flags

We identify six preliminary design patterns that may indicate trust-
distorting interaction strategies (see Appendix A Table 4 for over-
sight suggestions for each pattern) but are not proposed as finalized
rules or universally harmful features. Rather, we offer them as pre-
liminary heuristics that warrant further empirical scrutiny. These
patterns emerged from our analysis of when and how trust was
most vulnerable, particularly under recency and severity dynamics,
and may serve as early warning signs for developers, regulators,
and auditors evaluating whether a system might unintentionally
distort trust.

(1) Non-chronological Output Ordering: Reordering outputs to
present accurate responses last, potentially masking earlier
errors.

(2) End-weighted Confidence Messaging: Adding summaries or
high-confidence outputs at the end, which may inflate per-
ceived reliability.
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(3) Timed Outputs: Delivering persuasive or trust-boosting re-
sponses at the end of an interaction, exploiting recency ef-
fects.

(4) Lack of Source Provenance: Presenting factual claims without
links to original, verifiable sources.

(5) Unlogged or HiddenMisclassifications: Omitting or concealing
the system’s past errors, corrections, or user overrides.

(6) Reward-Maximizing Designs: AI systems autonomously learn-
ing to exploit cognitive biases to optimize engagement or
compliance.

Oversight recommendations for these patterns are provided in
Appendix Table 4.

Importantly, these patterns do not assumemalicious intent. Many
could arise from well-intentioned UX or system-level decisions,
such as simplifying output displays or optimizing for engagement.
However, given our findings that users may forgive early or subtle
missteps, such designs could produce disproportionate trust even
in systems with unreliable historical behavior.

5.8 Revisiting Domain-Based Risk
Classifications

While regulatory frameworks such as the EU AI Act classify AI sys-
tem risk primarily based on application domains, the NIST AI RMF
offers a context-driven approach that assesses risk based on the spe-
cific use case and potential impact. our findings suggest that certain
interaction-level design choices may introduce high-risk dynam-
ics even within systems traditionally labeled as low-risk [17, 48].
Specifically, when systems sequence outputs in ways that exploit
cognitive biases (e.g., recency bias or confidence framing), they
may create manipulation risks that are not visible through domain
classification alone.

We propose that regulators consider integrating interaction-
based risk assessments alongside domain-based ones. These assess-
ments could focus on whether the output of a system is chronologi-
cally transparent, whether the confidence signals are time-weighted,
and whether past misclassifications are visible or suppressed.

5.9 Alignment with Trustworthy AI
Frameworks

Our proposed oversight mechanisms offer concrete ways to op-
erationalize existing principles in the ISO/IEC 22989 standard for
trustworthy AI, particularly around traceability, transparency, and
accountability [24]. For example, requiring behavioral logs and
source provenance supports both post-hoc accountability and proac-
tive auditing. However, we emphasize that these proposals should
be interpreted as hypothesis-generating extensions, meant to guide
future research, governance experimentation, and regulatory re-
finement.

A Call for Cross-Disciplinary Review. We further recommend that
these design risks be evaluated not only by technical experts, but
through sociotechnical review processes. Prior real-world harms—such
as biased hiring algorithms and facial recognition errors—demonstrate
the value of diverse, interdisciplinary oversight [12, 26]. In the same
spirit, seemingly minor design choices involving error visibility,

output ordering, or confidence messaging should be reviewed holis-
tically, especially as AI becomes embedded in everyday decision-
making contexts.

5.10 Limitations and Future Work
Our study provides initial insights, and its limitations highlight
avenues for future research. Firstly, while our findings ground sev-
eral policy and design considerations, these are based on a single
experimental study. Future work should aim to strengthen these
proposals by more directly aligning them with existing regulatory
frameworks (e.g., the EU AI Act, NIST AI RMF) and by clearly dis-
tinguishing empirically supported recommendations from broader,
exploratory ideas. This will better delineate immediately actionable
insights from those intended to guide longer-term research and
policy development.

Secondly, this research focused on trust dynamics within one-
time interactions. Longitudinal studies observing user engagement
with AI systems over extended periods are crucial to more deeply
understand the processes of trust repair, adaptation, and potential
decay over time.

Finally, our participant sample was primarily fromWEIRD (West-
ern, Educated, Industrialized, Rich, andDemocratic) societies, which
may not fully represent global user diversity. Given that AI errors
can disproportionately impact vulnerable communities, future re-
search must engage more demographically diverse participants.
Such studies are needed to explore potential variations in error
perception, trust calibration, and the specific needs of different user
groups.

6 CONCLUSION AND FUTURE DIRECTION
This study advances the understanding of how trust in AI is shaped
not just by the presence of errors, but by when and how severely
they occur. Our findings suggest that trust is temporally sensitive
and context-dependent, with late and severe errors eroding trust
most, while early or low-severity errors are often forgiven, particu-
larly in lower stake settings. These findings challenge static trust
models and underscore the need for interaction-aware frameworks.

Beyond theory, our results expose design vulnerabilities that
might unintentionally distort perception. Subtle features like out-
put order, confidence signaling, and error visibility may inflate
trust, even in ‘low-risk’ systems. We offer a set of preliminary trust-
inflating design patterns as hypotheses for future scrutiny. Moving
forward, it is imperative that researchers, designers, and regulatory
bodies extend their focus beyond what AI systems achieve, to rigor-
ously investigate and govern how AI interaction design profoundly
shapes human judgment - before these patterns become normalized
and embedded at scale.
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A APPENDIX
A.1 FIGURES

Table 3: Participant Demographics (N = 364)

Category n %

Gender
Male 144 39.20%
Female 215 58.58%
Non-binary 5 1.36%

Age Group
18–26 80 21.80%
27–46 195 53.13%
47–59 71 19.35%
60–77 4 4.63%

Highest Level of Education
High School Diploma 40 10.90%
Associate’s Degree 42 11.40%
Undergraduate Degree 131 35.69%
Master’s Degree 49 13.35%
Professional Degree 6 1.63%
Doctorate Degree 8 2.18%

Race/Ethnicity
White 265 72.21%
Black or African American 56 15.26%
Asian 40 10.90%
Hispanic or Latino 32 8.72%
Native American Indian or Alaskan Native 7 1.91%
Native Hawaiian or Pacific Islander 3 .82%
Other 4 (–)

Figure 2: Mean trust across timing conditions with error bars.
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Table 4: Design Patterns That May Indicate High-Risk Trust Manipulation

Design Pattern Description Suggested Oversight Mechanism

Non-chronological
Output Ordering

Reordering outputs to place accurate re-
sponses last, masking earlier errors

Require output timestamps and default chrono-
logical display; audit logs should flag artificial
sequencing

End-weighted Confi-
dence Messaging

Adding summaries or high-certainty visu-
als at the end of interactions, which may
unintentionally boost perceived reliabil-
ity and overshadow earlier inconsisten-
cies

Encourage summaries to reflect full interaction
history; audit for omission of past errors, even if
added for UX reasons

Timed Outputs Delivering persuasive or reassuring re-
sponses towards the end of an interaction

Require behavioral logs capturing timing context;
audit systems for patterns of behavioral nudging

Lack of Source Prove-
nance

Outputting factual claims without links
to original, verifiable sources

Enforce citation of sources, disclosure of confi-
dence intervals, and real-time user access to sup-
porting evidence

Unlogged or Hidden
Misclassifications

Omitting or concealing the system’s own
past errors or user correction attempts

Require tamper-proof logging of errors, correc-
tions, and overrides for audit and transparency

Designs for Reward-
Maximizing

AI systems autonomously learn to exploit
cognitive biases in order to maximize re-
ward or engagement objectives

Require behavioral audits to detect emergent
trust-inflating patterns; Mandate audits of sys-
tem optimization goals; impose guardrails on re-
inforcement learning criteria when trust or com-
pliance is the metric being optimized

Table 5: Type III ANOVA Results for Trust in AI

Effect Sum Sq Df F value Pr(>F) 𝜂2𝑝

Intercept 194.560 1 527.4990 < 2.2 × 10−16 –
context 0.918 1 2.4891 0.1155 0.02
severity 1.578 1 4.2782 0.0393* 0.04
mistake_timing 7.633 3 6.8979 0.00016*** 0.04
context:severity 0.324 1 0.8782 0.3493 0.03
context:mistake_timing 0.636 3 0.5750 0.6318 8.33e−4

severity:mistake_timing 4.799 3 4.3368 0.0051** 0.04
context:severity:mistake_timing 0.719 3 0.6494 0.5838 5.57e−3
Residuals 128.355 348 – – –

Note. (* = p < 0.05, ** = p < 0.01, *** = p < 0.001). The effect size 𝜂2𝑝 (partial 𝜂2) can be interpreted as small if 𝜂2𝑝 = 0.01, medium if 𝜂2𝑝 = 0.06, and large if 𝜂2𝑝 = 0.14 [34].

Table 6:Means (and SD) of Trust inAI by Severity andMistake
Timing

Mistake Timing

Severity Begin End Never Random

High 2.98 (0.64) 2.72 (0.65) 3.40 (0.58) 3.05 (0.76)
Low 3.24 (0.59) 3.30 (0.57) 3.26 (0.55) 3.27 (0.57)

Note. Trust means (and SDs) for each combination of Severity and Mistake Timing.
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Figure 3: Mean trust across timing and severity conditions
with error bars.

Figure 4: Mean trust across severity conditions with error
bars.
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A.2 THE SURVEY
Expectation Framing Prior to Task Onset

Before starting the task, participants were shown the following
message:

‘In the following experiment, an AI device is classify-
ing images, but it may not be perfect. Therefore, we
want to have you indicate whether you agree with the
classification or not.’

This framing was informed by Vereschak et al. [65], who empha-
size the importance of controlling participant expectations at the
start of trust experiments. Positive expectations are a prerequisite
for trust formation; without them, participants may approach the
system with skepticism, undermining valid trust measurement [65].
Rather than stating a fixed accuracy rate, we adopted a balanced
description that acknowledges fallibility while encouraging engage-
ment—an approach supported by prior studies Vereschak reviewed
in their Trust in AI literature review within HCI. This also helped
normalize error and support trust calibration across our experimen-
tal conditions.

Display the Captcha, pledge, and consent form. Then display
instructions and screening questions.

• Questions about their trust in the AI device. The question-
naire and scale from the work of Gulati et al. [21] were used
to measure trust in the AI device, with a Cronbach’s alpha
of greater than 0.84.

• Questions about their confidence and satisfaction in the AI
device

• Two qualitative questions. The first question asked partic-
ipants to describe the performance of the device and why
they would or would not trust it. The second question asked
participants to describe their initial impressions of the AI
device and asked if their impression later changed and why
or why not.

• Questions about cognitive load. The questionnaire and scale
from the work of Hart et al. [22] were used to understand
the cognitive load participants faced when interacting with
the AI device.

• Question about the expertise of the participants. This ques-
tionnaire and scale from the work of Kahr et al. [27] were
used to measure the level of expertise of the participants
with AI.

• A question measuring self-efficacy, that asks the participant
directly how confident they are in understanding the AI
device.

• A question that measures how well participants think they
understand AI.

• A question asking participants to rate their past experiences
with AI.

• Questions about their disposition to trust humans, in general.
This questionnaire and scale were taken from McKnight et
al [43].

• Questions measuring personality using the big 5 personality
questionnaire and scale (10 item version) [57].

• Debrief, revealing that the AI was partially simulated and
had a designated 92% accuracy. This partial deception was

important to test user trust in plausible high-accuracy sys-
tems.

• Five demographic questions (age, gender, race or nationality,
education, income, employment, and how long they have
lived in the USA.)

A 2.1 Instructions

• In the following experiment, an AI device is classifying im-
ages, but it may not be perfect. Therefore, we want to have
you indicate whether you agree with the classification or
not.

• First, you will be shown an image. The AI has classified the
image. You will be asked if you agree with the classification.
The correct classification will be shown after.

• Attention Check instructions.

A 2.2 Scenario Description

(1) Military Security Context Instructions: For the following
questions, you will be reviewing images that an AI system
has classified. Imagine you are a Military Operator who must
report what has been flagged by an AI device for further in-
vestigation in a battlefield scenario, based on the AI system’s
classification of an image.

(2) Social Media Moderation Context Instructions: For the fol-
lowing questions, you will be reviewing images that an AI
system has classified. Imagine you are a ’Social Media Mod-
erator’ regulating content for children (ages 13-17) who must
make moderation decisions (such as deleting posts and im-
ages) based on the AI system’s flag of inappropriate content.

(3) Annouce Main Survey

Figure 5: Incorrect classification example. Image credit: DES
Daughter via Flickr, licensed under CC BY-NC-SA 2.0. This
image was not part of the actual participant stimuli.

Social Media Scenario. The AI was incorrect. The previous
image actually contains "Informational Awareness". This is a very
minor misclassification.
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Military Defense Scenario. The AI device says this is a "Cruise
Ship".

Imagine you are a military operator who must make battlefield
decisions based on the AI system’s responses. Do you agree with
the AI device?

The AI was correct. The previous image was actually a "Cruise
Ship".

A 2.3 Trust Questionnaire. These questions were shown in
the stated order. All responses were recorded on a Likert scale of
1-5.

• In the following questions, if you were to use the AI Device
from the questions you just answered (based on how it per-
formed), please indicate how much you agree or disagree
with the following statements:

• I believe that there could be negative consequences when
using (—)

• I feel I must be cautious when using (—)
• It is risky to interact with (—)
• I believe (—) will act in my best interest
• I believe that (—) will do its best to help me if I need help
• I believe that (—) is interested in understanding my needs
and preferences

• I think that (—) is competent and effective in classifying
images

• I think that (—) performs its role as an image classifier very
well

• I believe that (—) has all the functionalities I would expect
from an (—)

• If I use (—), I think I would be able to depend on it completely
• I can always rely on (—) for classifying images
• I can trust the information presented to me by (—)

A.3 Individual Differences and Covariates
Measurements

Our study measured participants’ prior experience with AI, trust
propensity, perceived and actual AI expertise, self-reported confi-
dence and satisfaction with the AI system, and personality traits.

A 3.1 Prior Experience with AI.
Our past experiences drive our expectations [65], and can affect
the way we update our beliefs. For example, if the past experience
with a system was negative, a participant is more likely to over-
react to an error during an experiment, reconfirming their initial
expectations [65]. Therefore, we asked participants about their
prior experiences with AI, to understand any potential bias. It is
recommended to assess the expertise and prior experience of users
regarding both the AI-embedded systems and the task when run-
ning a study [65]. To gauge participants’ baseline attitudes toward
AI, we included the following question:

How would you rate your past experiences with AI?

• Positive
• Neutral
• Negative

Although this question was not drawn from a standardized ques-
tionnaire, it was designed to capture potential preexisting biases
that could influence trust in AI systems.

A 3.2 AI Expertise. Participants were asked to answer questions
assessing their expertise in AI and also rate their own perceived
expertise with AI. In their review of trust in HCI, Vereschak et al.
emphasize that vulnerability is a defining component of trust, dis-
tinguishing it from adjacent concepts like confidence. When users
do not perceive a situation as risky or do not feel vulnerable to the
system’s actions, their reliance may reflect confidence rather than
genuine trust[65]. For example, a person who assumes a systemwill
work simply because it usually does, without considering potential
risk, may exhibit confidence rather than trust, especially when the
perceived stakes are low.

This distinction has practical implications for experimental de-
sign. As Vereschak et al. argue, when perceived vulnerability is low
or self-confidence is high, trust assessments may be confounded by
the user’s belief in their own competence. In other words, people
may attribute successful outcomes to their own expertise rather
than to the trustworthiness of the system itself. To account for this,
we controlled for participants’ actual expertise and perceived AI
expertise, which captures subjective confidence in one’s ability to
use or understand AI. This allowed us to better isolate trust as a
relational construct, dependent on perceived capabilities and risks
associated with the AI system, rather than as a reflection of the
user’s self-efficacy.

Participants were asked to rate thow much they agreed with
the following questions about AI technologies on a 7-point Likert
scale (1 = Strongly Disagree, 7= Strongly Agree) developed and vali-
dated by Pinski et. al. [54] This variable was included to control for
baseline familiarity and potential biases in trust-related responses.
Participants indicated their level of agreement with the following
statements:

I have knowledge of. . .
(1) . . . the types of technology that AI is built on.
(2) . . . how AI technology differs from non-AI technology.
(3) . . . use cases for AI technology.
(4) . . . the roles that AI technology can play in human–AI inter-

action.
A 3.4 Perceived AI Expertise.

We asked participants the following questions:
(1) I am confident that I understand how to use AI to solve a

problem I may have.
(7-point Likert scale: 1 = Strongly Disagree, 7 = Strongly
Agree)

(2) How well do you understand Artificial Intelligence (in gen-
eral, including how it works and its applications)?
(Participants selected one of the following response options:)

• No understanding
• Basic understanding of what AI is
• Good understanding of AI applications and use cases
• Strong understanding of how AI systems are built and func-
tion

• Expert knowledge in AI technologies and theories

A.4 Disposition to Trust.
We used the following scale by McKnight et al. [44] to measure
participants’ general disposition to trust others. The scale captures
four dimensions: benevolence, integrity, competence, and trusting
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stance. Participants rated their agreement with each item on a
Likert scale from 1 (Strongly Disagree) to 5 (Strongly Agree).

Benevolence

(1) In general, people really do care about the well-being of
others.

(2) The typical person is sincerely concerned about the problems
of others.

(3) Most of the time, people care enough to try to be helpful,
rather than just looking out for themselves.

Integrity

(1) In general, most folks keep their promises.
(2) I think people generally try to back up their words with their

actions.
(3) Most people are honest in their dealings with others.

Competence

(1) I believe that most professional people do a very good job at
their work.

(2) Most professionals are very knowledgeable in their chosen
field.

(3) A large majority of professional people are competent in
their area of expertise.

Trusting Stance

(1) I usually trust people until they give me a reason not to trust
them.

(2) I generally give people the benefit of the doubt when I first
meet them.

(3) My typical approach is to trust new acquaintances until they
prove I should not trust them.

A.5 Big Five Personality.
In particular, since we are asking participants whether they agree
with the AI Device or not, we should measure participant’s agree-
ableness. We measured participants’ personality traits using the
10-item version of the Big Five Inventory (BFI-10) [56]. Participants
responded on a 5-point Likert scale ranging from 1 = Strongly
Disagree to 5 = Strongly Agree.

Participants were asked to indicate how much they agreed with
the following statements beginning with: “I see myself as someone
who. . . ”

(1) is reserved
(2) is generally trusting
(3) tends to be lazy
(4) is relaxed, handles stress well
(5) has few artistic interests
(6) is outgoing, sociable
(7) tends to find fault with others
(8) does a thorough job
(9) gets nervous easily
(10) has an active imagination

A.6 AI Confidence and Satisfaction.
Vereschak et al. [65] emphasize that trust is conceptually distinct
from related constructs such as confidence and satisfaction, primar-
ily due to the central role of vulnerability in trust. When vulnera-
bility is absent—such as in low-stakes situations or when users per-
ceive minimal risk—reliance on a system may stem from confidence
rather than trust. Confidence reflects a belief in favorable outcomes
without the need to evaluate alternatives or consider the possibility
of failure [65]. In contrast, trust entails a willingness to accept risk
despite uncertainty or potential negative consequences [59, 65].

This distinction is particularly important in human–AI interac-
tion. If participants feel no meaningful vulnerability in using the
AI system, perhaps because the task appears trivial or because they
are highly familiar with similar technologies, their reliance may be
based on confidence or satisfaction, not genuine trust. To disentan-
gle these constructs, we measured and controlled for participants’
confidence and satisfaction with the AI. This allowed us to assess
whether trust ratings were driven by perceived trustworthiness or
simply by general comfort or contentment with the interaction.

Participants answered the following items on a 7-point Likert
scale (1 = Strongly Unsatisfied/Unconfident, 7 = Strongly Satis-
fied/Confident):

(1) How satisfied were you with the AI device?
(2) How confident are you in the AI device?

A.7 Images and Licenses

2All images above were not reproduced in the final manuscript; they were used solely
as private, nonpublic stimuli for research participants. Each listing cites the presumed
copyright holder or source. We rely on a fair use rationale under U.S. law (or similar
exemptions) given the strictly educational and noncommercial setting. Any rights
holders seeking further credit or removal are encouraged to contact the authors.
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Table 7: Summary of Third-Party Images Used for Research Stimuli (Not Reproduced in Manuscript)2

Image Title / Descrip-
tion

Source & Date Ownership / License Usage & Fair Use Rationale

Weather Balloon KIIITV news article (2022). Likely all rights reserved (local out-
let).

Shown under low-res conditions for participant analysis of a news
photo. Used strictly for noncommercial, educational research; not
reproduced in final paper.

Drone Image Trevor Raab / Popular Mechanics (also on
Yahoo! Lifestyle).

Copyright by photographer or maga-
zine.

Participants evaluated the consumer drone depiction. Used strictly
for noncommercial, educational research; not reproduced in final
paper.

“KnowWhat Drowning
Looks Like”

Kenosha YMCA website (2024). Educational content; presumed all
rights reserved.

Infographic used strictly for noncommercial, educational research;
not reproduced in final paper.

Suicide-Prevention In-
fographic

Carisk Behavioral Health & Community
Care Plan (2024).

All rights reserved. Used strictly for noncommercial, educational research; not repro-
duced in final paper.

“Impact/Effects of
Drugs”

Department of Health, Rep. of the Philip-
pines (2023).

Government material; treated as
copyrighted.

Fair use for strictly for noncommercial, educational research; not
reproduced in final paper.

“Every Child Has a
Right”

The Mama Bear Effect (2021). All rights reserved. Displayed in a private study environment. Used strictly for non-
commercial, educational research; not reproduced in final paper.

“STOP Online Sexual
Harassment”

Project deSHAME/Childnet (EU Com-
mission).

All rights reserved. Fair use for strictly for noncommercial, educational research; not
reproduced in final paper.

Human-Like Tree
Trunk Photo

Unknown source (viral on Red-
dit/Tumblr).

Original copyright owner undeter-
mined.

Fair use for strictly for noncommercial, educational research; not
reproduced in final paper.

“Iraqi Freedom” Mural
Photo

Mural by Don Gray, photo by Gerald
Thurman (2003).

Artwork + photograph each copy-
righted.

Fair use for strictly for noncommercial, educational research; not
reproduced in final paper.

U.S. Bank Photo Minneapolis/St. Paul Business Journal
(2024).

Credited to U.S. Bancorp or the Jour-
nal.

Fair use for strictly for noncommercial, educational research; not
reproduced in final paper.

“Cosplay Codename:
KND”

DeviantArt user knoah123 (2023). Artist owns copyright. Fair use for strictly for noncommercial, educational research; not
reproduced in final paper.

Lake Photo Hacche Moor Fishery website (© 2025). Copyright by Hacche Moor Fishery. Aerial/lake layout used for academic stimuli. Fair use for strictly
for noncommercial, educational research; not reproduced in final
paper.

Charity Poster Limkokwing University (Pinterest). Likely all rights reserved. Fair use for strictly for noncommercial, educational research; not
reproduced in final paper.

Missing Person Tem-
plate

Venngage Inc. All rights reserved. Generic wanted-poster template for design/perception research.
Resized, no commercial usage.

Minecraft Light-Up
Sword

Walmart product page. Retail promotional image, standard
copyright.

Fair use for strictly for noncommercial, educational research; not
reproduced in final paper.

Cruise Ship Photo AOL / The Independent (2023). News article image, likely all rights
reserved.

“Icon of the Seas”. Fair use for strictly for noncommercial, educa-
tional research; not reproduced in final paper.

Ducks Flying (Alamy) Alamy stock site (license not purchased). Watermarked stock photo, all rights
reserved.

Fair use for strictly for noncommercial, educational research; not
reproduced in final paper.

Epinephrine Auto-
Injector Infographic

Children’s Healthcare of Atlanta (2022). All rights reserved. Fair use for strictly for noncommercial, educational research; not
reproduced in final paper.

User-Drawn Flag Steemit user “niurkajgamboa.” Creator retains copyright. Fair use for strictly for noncommercial, educational research; not
reproduced in final paper.

Instagram Meme @_heather_ryan_ or other user handle
(faces blurred).

Typical all rights reserved social me-
dia.

Fair use for strictly for noncommercial, educational research; not
reproduced in final paper.

Submarine Image The National Interest (2023). Publication or photographer owns
rights.

Fair use for strictly for noncommercial, educational research; not
reproduced in final paper.

Southwest Airlines
Thumbnail

News4SA (Sept 13, 2024), possibly Getty. Likely all rights reserved. Fair use for strictly noncommercial, educational research; not
reproduced in final paper.

“MG Assassins” Group
Photo (X/Twitter)

User @_heather_ryan_ (Apr 26, 2019). Poster’s copyright. Blurred faces, secure environment. Analyzed social media content
under fair use.

Silhouette Group Photo Pinterest (linked to Wattpad text). No credited photographer, assume all
rights reserved.

Fair use for strictly for noncommercial, educational research; not
reproduced in final paper.

“Sushi!” Skateboarding
Photo

Pinterest user “rachel <3” Copyright likely with original pho-
tographer.

Fair use for strictly for noncommercial, educational research; not
reproduced in final paper.

Fighter Jet Photo The Independent (May 12, 2017), credit
JOHANNES EISELE/AFP/Getty.

Getty Images license normally re-
quired.

Used watermarked version. Fair use for strictly for noncommer-
cial, educational research; not reproduced in final paper.

Jeep Image (Polish Site) jedz-bezpiecznie.pl (2021) by Maciej
Kalisz.

Photographer/site retains copyright. Fair use for strictly for noncommercial, educational research; not
reproduced in final paper.

Mystery Rock Photo
(Unknown Origin)

Not found in reverse-image searches;
prior link is defunct

Possibly all rights reserved; exact
owner/creator unverified

Fair use for strictly for noncommercial, educational research; not
reproduced in final paper.

NASARocket (Kennedy
Blog)

NASA blog (June 1, 2022) photo credited
to Astra.

Possibly private contractor, not stan-
dard NASA public domain.

Fair use for strictly for noncommercial, educational research; not
reproduced in final paper.

Swing Photo (Pinterest) Pin ID 745064332094320740 by “Liane.” User retains copyright. Fair use for strictly for noncommercial, educational research; not
reproduced in final paper.

Statue (Foursquare) User “Carl J.” on Foursquare (Nov 6,
2015).

Photo presumably copyrighted to
user.

Fair use for strictly for noncommercial, educational research; not
reproduced in final paper.

All images above were not reproduced in the final manuscript; they were used solely as private, nonpublic stimuli for research participants. Each listing cites the presumed copyright holder or source. We rely on
a fair use rationale under U.S. law (or similar exemptions) given the strictly educational and noncommercial setting. Any rights holders seeking further credit or removal are encouraged to contact the authors.
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